P. Grossoni, P. Bruschi, F. Bussotti, M. Pollastrini & F. Selvi

The taxonomic interpretation of Mediterranean oaks of *Quercus* sect. *Quercus* (*Fagaceae*): uncertainties and diverging concepts

Abstract

The high degree of polymorphism found in the genus *Quercus* is certainly the main cause of the divergent taxonomic treatments that have often generated more uncertainties, if not confusion, than clarity. However, in recent years, also thanks to the use of molecular investigation techniques, several doubts have now been overcome. In this paper we summarized the main literature on the topic and provide a synthetic evaluation of the systematic position of the Italian taxa belonging to the so-called “*Quercus pubescens* group” (“downy oaks”).

Key words: *Quercus pubescens* complex, downy oaks, Mediterranean Basin.

Introduction

Oaks (*Quercus* L., *Fagaceae* Dumort.) are widely distributed in the Northern hemisphere playing important roles in providing forest products (timber, fuel wood, cork, mushrooms, extracts and derivatives, etc.), in conservation of biodiversity, protection of landscape and all related ecosystem services. In Italy, oak forests occupy about 2,873,000 ha, corresponding to 29.4% of the entire national forest area (Corona & al. 2004). The genus *Quercus* includes a large number of species. Camus (1936-39) quoted about 800 taxa, while Krüssmann (1986) reported about 450 species. The most recent taxonomic revisions tend to reduce the number of species by putting more emphasis on similar characters and adopting a wider species concept, so that currently between 300 and 350 species are recognized. Denk & al. (2017) provide a list of 858 names among species, synonyms, subspecies, hybrids, and dubious species.

The classification of oak species is under debate since centuries. Recently Denk & Grimm (2010) and Denk & al. (2017) revised the past classifications (Ørsted 1871; Schwarz 1936-39; Camus 1936-39; Nixon 1993) and proposed a new one based on a phylogenetic and molecular approach. According to this recent classification, *Quercus* is subdivided into two subgenera, *Q.* subg. *Quercus* and *Q.* subg. *Cerris,*
both including several sections. Oak species have very different general habit (trees
to shrubs), phenology (evergreen, deciduous, semi-deciduous), and ecological
requirements (from tropical to boreal and Mediterranean). Several species display
strong polymorphism and a remarkable ability to form hybrids, making their taxo-
nomic limits, and the species concept itself, quite elusive.

As early as in 1911, Antonino Borzì had deemed that the genus *Quercus* did pro-
vide “[...] the perfect negation of the concept of species [...]”, followed by the state-
ment “[...] it is an immense chaos [...]”. Still in the last quarter of the last century,
Burger (1975) stressed the difficulty of applying the biological species concept in
Quercus, due to relatively frequent gene exchanges between different species. A few
years later, referring to the “ability” of *Q. alba* L. and *Q. stellata* Wangenh. to form
hybrids with other 11 species of the eastern United States, Whittemore & Schaal
(1991) confirmed that oak species are easily interfertile due to weak and incomplete
interspecific reproductive barriers. On the other hand, the lack of sharp morphologi-
cal delimitations, together with low interspecific genetic differentiation, have often
been interpreted as the consequence of natural hybridisation in *Quercus* (Bruschi &
al. 2000; Salvini & al. 2009). Incorporation of heterospecific alleles, through
hybridization and regression, would yield reduced interspecific distances compared
to values expected for taxa that had been fully isolated genetically subsequent to spe-
ciation. Similar considerations can be found in Le Hardý de Beaulieu & Lamant
(2010), who published an illustrated world monograph of *Quercus*, that can be con-
sidered evolved from the work of Aimée Camus (1936-1939). Based on data collected
across the genus in different continents, these two authors also stressed the difficulty
of applying the biological species concept to oaks. In fact, several complexes of sym-
patric “species” exist in which taxa are capable of frequent gene exchange, thus
reducing their morphological divergence. According to Le Hardý de Beaulieu &
Lamant (2010) it would be more correct to use the term “multispecies” when refer-
ring to these complexes.

Gene flow and hybridization have certainly played an important role also in the
evolutionary history of oaks of the Mediterranean Basin. This region is considered a
hotspot of plant biodiversity (Médail & Quézel 1999), resulting from its biogeograph-
ic history and natural heterogeneity of habitats and environmental conditions. Events
like migration, micro-evolution, isolation in glacial refugia, range disjunctions and
others have favoured the formation of many endemic species but also local phenotyp-
ic variation in populations sometimes classified as distinct entities or taxa. Moreover,
the strong and long impact of human activities on habitats, landscape and vegetation,
especially forest fragmentation, has contributed to promote hybridization and intro-
gression between taxa in many plant groups (Médail & al. 2019).

In 1997 some of us (Bussotti & Grossoni 1997) published a comparative analysis
of the differences between several classifications of taxa of *Quercus* described from
the Mediterranean region (Camus 1936-1939; Greuter & al. 1986; Krüssmann 1986;
Nixon 1993; Pignatti 1982; Schwarz 1964, 1993). They found that these classifica-
tions had several nomenclatural and taxonomic discrepancies, the use of names and
synonyms being inconsistent and based on contrasting species concepts. This resulted
in doubts, uncertainties and contradictory conclusions. That analysis was subsequent-
ly republished in the journal Forêt Méditerranéenne (Bussotti & Grossoni 1998). It pointed out that the greatest perplexities and uncertainties concerned the groups “Q. pubescens - Q. petraea” and “Q. faginea - Q. lusitanica”, in which a high genetic diversity is associated with the tendency to differentiate numerous local phenotypes along almost continuous morphological gradients, without any clear correlation with ecological or geographical factors, thus making it very difficult to separate well-defined taxa.

The present contribution aims at revisiting the past and current classifications of the species belonging to Q. subg. Quercus in Italy, with special reference to the group Q. pubescens – Q. petraea group and related entities of the so-called “downy oaks”.

Taxa of Quercus sect. Quercus in Italy

Among the species currently placed in Quercus sect. Quercus, Q. robur was the only one described by Linnaeus (1753). Fiori (1923-1925) still used this name for the whole complex, albeit dividing it into numerous infraspecific taxa, many of which are currently obsolete. Subsequently, Di Tella (1930) and Merendi (1930) distinguished the English oak (“Q. pedunculata Ehrh.”) from the sessile oak, in which they included both “Q. sessilis Ehrh.” and “Q. lanuginosa Lam.”. All these entities were placed by Fiori (1930) in Q. robur and were generically called referred to as “querce roveri”.

More recent classifications are summarized in Table 1, which shows a persistent variability in the number of species, as well as the presence of numerous doubtful species. The unequivocally recognized species are Q. robur L., Q. petraea (Matt.) Liebl., Q. pubescens Willd. and Q. frainetto Ten., while Q. pyrenaica Willd., already considered as rare and present only in the Val di Susa (Piemonte) in the first edition of Flora d’Italia (Pignatti 1982), was excluded from the native Italian flora in the second edition (Brullo 2017) and by Brullo & al. (1999) and Brullo (2017), whereas Bartolucci & al. (2018) still include Q. pyrenaica in their list of the Italian native flora. These authors subdivided each Q. petraea and Q. robur into two subspecies, while Brullo (2017) considered Q. brutia Ten., omitted from Table 1, as a “phantom species”.

Recently, Bussotti (2020) summarised a synoptic table with the main morphological characters of the three principal species of the «robur-petraea-pubescens» complex; among them, Q. robur presents the lowest identification difficulty, due to the uniqueness and stability of the characters that consistently separate it from all other species. On the other hand, the distinction between Q. pubescens and Q. petraea is often uncertain due to the lack of stable and reliable morphological characters concerning twigs (shape, size, presence/absence of pubescence), leaves (size, shape, pubescence) and fruits (cupule of the acorns). Indeed, most of these characters show a continuous series of intermediate states connecting one species to the other and are often widely variable even within the same population or geographic area.
The downy oaks

Quercus pubescens is a very polymorphic species, and its circumscription includes a swarm of closely related entities, that are currently still considered as independent taxa in some recent accounts of the Italian flora, as reported in Table 1.

Considering the species within *Q. pubescens* “lato sensu”, compared to those recognized by Brullo (2017), the list by Bartolucci & al. (2018) does not include *Q. virgiliana* (Ten.) Ten., nor *Q. amplifolia* Guss., while *Q. ichnusae* Mossa & al. and *Q. leptobalana* Guss. are included. Schwarz (1993) also reported *Q. sicula* Borzì ex Lojac., although, at the time, it had already been qualified as a “mistake” by Antonino Borzì (Brullo & al. 1999). There is also an inconsistency in the spelling of one epithet: “leptobalana” in Bartolucci & al. (2018) and “leptobalanos” in Brullo & al. (1999) and Brullo (2017), a discrepancy which has its roots in the 19th century and, evidently, persists to date (both names...
are attributed to Guss. 1844), whereas \textit{Q. pubescens} has been definitively accepted instead \textit{Q. humilis} Mill. (\textit{Q. humilis} is now accepted as synonymous only for \textit{Q. pubescens} subsp. \textit{pubescens}).

The entities related to the “downy oak” complex were identified and determined for the first time in Sicily, Sardinia or southern Calabria; according to Brullo \& al. (1999) and Brullo (2017) the Italian range of \textit{Q. pubescens} is limited to the peninsular and continental regions, it being replaced in the large islands and in some areas of the southern peninsula by other species of the same complex, \textit{Quercus virgiliana} and \textit{Q. dalechampii} Ten.; these have also been reported in various countries of south-eastern Europe and the Balkans. However, there is much uncertainty as to the correctness of these reports, due to the often contradictory descriptions of the corresponding entities (Di Pietro \& al. 2012) and an overly subjective approach to recognition and classification. Arrigoni (2018), due to the lack of reproductive isolation, does not recognize \textit{Q. virgiliana} and considers it as a synonymy of \textit{Q. pubescens}, together with all the other putative species of the group (\textit{Q. congesta} C. Presl, \textit{Q. amplifolia}, \textit{Q. ichnusae}, and \textit{Q. leptobalana}).

A first morphometric approach to discriminate \textit{Q. pubescens} from other species of the same group in Sicily was attempted by Di Noto \& al. (1995), without conclusive results. Based on the study of 20 \textit{Q. pubescens} populations randomly sampled in central and southern Italy, Bruschi \& Grossoni (2004) observed a high morphological and molecular variability (with populations from Sicily, Sardinia and Calabria showing a higher average diversity than the others). While morphological characters (those related to the acorn cap) allowed these authors to identify five different groups, no differences were detected at molecular level. The same conclusions were drawn by Franjić \& al. (2006) in a molecular study on \textit{Q. pubescens} populations of Southern Croatia: “This study confirms a high variability of \textit{Q. pubescens} populations, but differences were not so big to confirm the opinion of existence of several species in this area”. Di Pietro \& al. (2016) found that all morphological characters analysed in 24 Apulian populations exhibited continuous variation, so that none of them could be used as a character to discriminate between populations; they concluded that it “is unlikely that more than one species belonging to the \textit{Quercus pubescens} complex occurs in the Apulia region”. Di Pietro \& al. (2020a, b, c) expanded this approach by comparing morphological and genetic aspects of seven taxa of the \textit{Q. pubescens} group (\textit{Quercus pubescens}, \textit{Q. amplifolia}, \textit{Q. congesta}, \textit{Q. dalechampii}, \textit{Q. ichnusae}, \textit{Q. leptobalanos}, \textit{Q. virgiliana}) in southern Italy and the islands (Sicily and Sardinia), concluding that “In light of the results obtained, the taxonomic classification for the pubescent white oaks currently reported in the major Italian floras and checklists for the study area was not confirmed by molecular analyses”.

Hybridisation within \textit{Quercus} sect. \textit{Quercus} appears to be extensive (Rushton 1993), and recorded hybrids between \textit{Q. petraea} and \textit{Q. robur} (Bacilieri \& al. 1995) and between \textit{Q. petraea} and \textit{Q. pubescens} (Salvini \& al. 2009) are common and widespread.

The results of a parentage analysis carried out through microsatellite markers on a mixed \textit{Q. petraea} – \textit{Q. pubescens} population (Salvini \& al. 2009) showed an asymmetrical gene flow with a predominant component in the direction \textit{Q. petraea} versus \textit{Q. pubescens}. These results also showed that intermediate individuals are pollen-receptive towards both species and their high pollen viability provides potential for fostering high rates of introgression.
Conclusions

The accurate morphological and genetic analyses, carried out by the various research groups mentioned in this article, allow us to exclude that the multitude of botanical names associated with the *Q. pubescens* group is mirroring effective differentiation into well-defined species, thus supporting the conclusions of Wellstein & Spada (2015): “While some schools in southern Europe still emphasize the distinctness and the species status of many taxa described during the earliest botanical surveys, the current trend is toward rejecting many names and considering them as synonyms”.

Polymorphism is frequent in oak species. Corti (1959), for example, mentioned 175 infraspecific taxa under *Quercus ilex*, that is considered a non-controversial species. *Q. ilex* is characterised by a set of well-defined and generally accepted characters, whereas the characterization of the “white oaks” is more subtle and their evaluation can be affected by a certain degree of subjectivity.

In the absence of selective reproductive barriers, hybridization can generate phenotypes with appreciable morphological and ecological diversity, even with extreme forms that can sometimes be quite distinctive. However, these phenotypes are usually distributed along continuous morphological gradients, and have no or little geographic or ecological distinctness, being often overlapping and mixed in the same locality or forest areas.

However, a taxonomic simplification does not imply a simplification at the genetic and ecological level. The deciduous oak forests of southern Italy are a large reserve of genetic variability that is an important asset for the adaptation of European forests to climate change. Southern provenances of deciduous oaks are good candidates to restore the Central European forests affected by drought in a context of “assisted migration” (Bussotti & al. 2015).

References

Enescu, C. M., Curtu, A. L & Șofletea, N. 2013: Is Quercus virgiliana a distinct morphological and

L’importanza degli alberi e del bosco. – Trento.

Fineschi, S. & Vendramin, G. G. 2004: La diversità cloroplastica delle querce italiane: evidenze di una
maggiore ricchezza genetica nelle popolazioni meridionali e insulari. – Forest@ 1: 82-87.

— 1930: Le querce roveri. – Alpe 17: 348-350.

the circum-mediterranean countries. 3. Dicotyledones (Convolvulaceae-Labiatae). – Berlin.

Linné, C. 1753: Species plantarum. – Stockholm.

Médail, F. & Quézel, P. 1999: Biodiversity hotspots in the Mediterranean basin: setting global conserva-

—, Monnet, A.-C., Pavon, D., Nikolic, T., Dimopoulos, P., Bacchetta, G., Arroyo, J., Barina, Z.,
is a tree in the Mediterranean basin hotspot? A critical analysis. – Forest Ecosyst. 6: 17.

Merendi, A. 1930: La rovere. – Alpe 17: 357-364.

Nixon, K. C. 1993: Infrageneric classification of Quercus (Fagaceae) and typification of sectional

H. & Moore, D. M (eds), Flora europaea, ed. 2., 1. – Cambridge.

Box, E. O. & Fujiwara, K. (eds), Warm-temperate deciduous forests around the northern hemi-
sphere. – Geobot. Stud. – Cham.