Ridha El Mokni & Mohamed Hédi El Aouni

Zantedeschia aethiopica (Araceae) a new species naturalized in the Northwest of Tunisia

Abstract

Zantedeschia aethiopica (L.) Spreng. (*Araceae*), originating from S Africa, was found naturalized in many sites of the Kroumiria region (Northwest of Tunisia). This report represents the first record for the Tunisian flora. Distribution and ecological notes are also given.

Key words: Alien flora, N Africa, aroid species.

Introduction

Zantedeschia Spreng. the classic white calla lily or arum lily is a genus of the *Araceae* Juss. It is an important ornament grown worldwide (Kuehny 2000; Snijder & al. 2004; Wright & al. 2005; Ni & al. 2009, 2010), with about eight species in two sections, all native to Africa (Letty 1973; Singh & al. 1996). The genus name *Zantedeschia* was given in honor to Giovanni Zantedeschi (1797-1873) (Fournier 1977), an Italian botanist, priest, physicist and professor. Diploid plants in all *Zantedeschia* Spreng. sp. pl. contain 32 chromosomes, $2n=2x=32$ (Yao & al. 1994). This very attractive plant has been described in 1753, by Carl Linnaeus as *Calla aethiopica* and it has been commonly known as the calla lily ever since. In 1826, Sprengel transferred it to a new genus which he called *Zantedeschia* Spreng. (Letty 1973). The present work confirms the naturalization of *Zantedeschia aethiopica* and give an idea about its actual distribution within the Tunisian territory. The discovery of this new naturalized aroid constitutes up to now the first record for the Tunisian flora.

Native habitat and distribution area

In North Africa, only Maire (1957) cited the genus as most frequently cultivated on the coast and naturalized in the neighborhood of Tanger (Morocco), of Bône and of the Calle (Algeria). Neither *Calla* nor *Zantedeschia* were reported in any North-African flora (Quèzel & Santa 1963; Valdés & al. 2002) even in some recent index floristic updating (Le Floc’h & al. 2010; Dobignard & Chatelain 2011).

Description

Description of the different parts of the plant was based on morphometric measurements with reference to some previous works including those of Maire (1957), Letty (1973), Fournier (1977), Singh & al. (1995), Fennane & Ibn Tattou (1998), Macfarlane & al. (2000), Germishuizen & Meyer (2003).

Vegetative apparatus and life form

The white or common arum lily, *Zantedeschia aethiopica* (L.) Spreng. is a perennial, laticiferous, robust, evergreen or deciduous, erect and clump-forming plant with thick rhizomes and white fleshy roots, growing usually to 0.6 – 1.0 m high in sunny positions but getting up to 1.5 m high if growing in shade. The leaves, without a persistent basal meristem, are large and leathery and having a laminae sagittate or ovate-cordate form with ovate to orbicular blades; parallel-pinnate veined, growing to 15 – 45 cm × 10-25 cm, glossy dark green with somewhat lighter green very fine veins, on 40-100 cm long succulent petioles of lighter green colour, spongy, white on the inside and purplish on outside. The scape is of similar height as the leaves, of green colour and stout.

Vegetative anatomy

Inflorescence and flower features

The flower has a very distinctive structure; what appears to be a large petal is actually a modified leaf called spathe of ivory-white colour but bright green at the base on outside. The spathe is up to 25 cm long, funnel shaped narrowing towards the tip with a small recurved apex; inside it contains the actual flower which is a 10 - 12 cm long spadix of bright yellow colour having a basal female zone of ¼ - ½ of the spadix continued with an upper male zone. Fertile flowers functionally male and functionally female.
Reproductive type and pollination

Plants monoecious. The unisexual flowers aggregated in different parts of the same inflorescence. Female flowers with staminodes (interspersed among the ovaries in some species), sometimes without staminodes. Entomophilous. Pollination mechanism conspicuously specialized. Flowers aggregated in ‘inflorescences’; in spikes. Inflorescence simple (solitary). The terminal inflorescence unit seemingly racemose. Inflorescence with long and stout peduncle and numerous flowers, males above females, lacking sterile sections. Flowers ebracteate; ebracteolate; small; (these or the spadix) fragrant, or malodorous; cyclic. Perianth absent. Fertile stamens present, or absent (when female). Androecium 2-3; 1-whorled. Androecium exclusively of fertile stamens. Pollen shed in aggregates; in long beaded strings. Ovary usually 3 locular with several anatropous ovules in each locule, placentation axile. Gynoecium shortly stylate. Styles apical. Stigmas discoid; wet when receptive; non-papillate; Group II type. Placentation axile. Ovules 1–8 per locule; attached dorsally to the central placenta; orthotropous, or hemianatropous, or anatropous.

Fruit and seed features

The fruits are fleshy, berry-like, up to 1 cm in diameter and green or orange to yellow; indehiscent (berries clustered, usually surrounded by, and contained within, the withering spathe). Fruit contains few to numerous subglobose or ovoid starchy seeds. Embryo straight (linear). Seeds with copious endosperm.

The Tunisian findings

Plants of *Z. aethiopica* were observed on the 10th of April 2011, for the first time, during an extended field excursion on the commune of Aîn Draham within the Kroumiria region (North-West of Tunisia) where it grows as spontaneous in the underwood of a planted pine forest (Fig. 1). It is probably introduced by way of ornamental plants in surroundings and reaching the area of its found (geographical coordinates: Lat. 36° 46’56.06” N, Long. 08° 41’12.70” E and an elevation about 716 meters, above sea level) by through some small waterways. Vegetation of this area was constituted essentially of *Pinus* sp. pl., *Eucalyptus* sp. pl., *Rubus ulmifolius* Schott, *Nerium oleander* L., *Pteridium aquilinum* (L.) Kuhn. subsp. *aquilinum*, *Mentha suaveolens* Ehrh. subsp. *suaveolens*, *Mentha pulegium* L. subsp. *pulegium*, *Bellis annua* L., *Rumex pulcher* L., *Rumex tuberosus* L. *Smyrnium olusatrum* L., *Cirsium scabrum* (Poir.) Bonnet & Barratte, *Ophrys bombyliflora* Link., *Ophrys tenthredinifera* Willd.

Subsequent observations (February 2012) show that *Z. aethiopica* (L.) Spreng. still present, behaves as a perennial species and continue to reproduce and spread gradually; two new sites were recorded (Tabarka with the following geographical coordinates: Lat. 36° 57’05.45” N, Long. 08° 45’48.75” E and an elevation about 1 meter, above sea level and Bni Mtir with the following geographical coordinates: Lat. 36° 44’23.34” N, Long. 08° 44’02.67” E and an elevation about 526 meters, above sea level). Its spread and distribution as a naturalized plant is so far strictly linked to the Kroumiria region.
Specimina visa:

Tunisia: Ain Draham, the underwood of a planted pine forest, 36° 46’56.06” N 08° 41’12.70” E, 716 m a.s.l., 10.4.2011, R. El Mokni (TUN); Tabarka, 36° 57’05.45” N 08° 45’48.75” E, 1 m a.s.l., 5.2.2012, R. El Mokni (TUN); Bni Mtir, 36° 44’23.34” N, 08° 44’02.67” E, 526 m a.s.l., 5.2.2012, R. El Mokni (TUN).

Ecological interest and ethnobotanical activities

Z. aethiopica may be useful in artificial wetland systems to clean waste water and prevent algal growth (Belmont & Metcalfe 2003), a prompt idea that can be exploited for the cleaning up of some contaminated soils. The trouble is that this aroid plant smothers ground layer preventing regeneration of native flora and might become hard to control at times, especially when forming dense populations in swamps and moist river banks. The dispersal is quite slow and is mostly vegetative, with the rhizomes exploring and occupying the nearby patches and giving ultimately birth to new shoots, but also seed dropped nearby parent plant or spread by birds is a secondary mean of dispersal. Although few good uses are known for the plant; parts of the plant have an ethnobotanical use (traditionally this plant is boiled and eaten, especially the rhizomes or tuberous roots; leaves are also traditionally used as a poultice and a treatment for headaches), the raw plant is regarded as being highly toxic due different chemicals. Usually it causes discomfort (mostly swelling of the throat) but reportedly if eaten in big quantities it may be even fatal (cf. Aubrey 2001). In conclusion, with this addition the flora of Tunisia is enriched of one genus and one species.

Fig. 1. First observation, with flowers, of naturalized Zantedeschia aethiopica in the Kroumiria (Government of Jendouba, North-West of Tunisia) on the 10th April 2012 (Photo R. EL MOKNI).
Acknowledgements

We would like to thank all members of the “Tela-Botanica Afrique du Nord” for their help in obtaining plant identification.

References

Address of the authors:
Ridha El Mokni & Mohamed Hédi El Aouni,
University of Carthage, Laboratory of Botany and Plant Ecology (ANS-214),
Department of Life Sciences, Faculty of Sciences of Bizerte, Jarzouna -7021 - Bizerte, Tunisia. E-mail of corresponding author: riridah@yahoo.fr